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Abstract 

The development of an open-loop guidance architecture is outlined for autonomous 

rendezvous and docking (AR&D) missions to determine whether the Global Position- 

ing System (GPS) can be used in place of optical sensors for relative initial position 

determination of the chase vehicle. Feasible command trajectories for one, two, and 

three impulse AR&D maneuvers are determined using constrained trajectory opti- 

mization. Early AR&D command trajectory results suggest that docking accuracies 

are most sensitive to vertical position errors at the initial condition of the chase ve- 

hicle. Thus, a feasible command trajectory is based on maximizing the size of the 

locus of initial vertical positions for which a fixed sequence of impulses will trans- 

late the chase vehicle into the target while satisfying docking accuracy requirements. 

Documented accuracies are used to determine whether relative GPS can achieve the 

vertical position error requirements of the impulsive command trajectories. Prelim- 

inary development of a thruster management system for the Cargo Transfer Vehicle 

(CTV) based on optimal throttle settings is presented to complete the guidance archi- 

tecture. Results show that a guidance architecture based on a two impulse maneuver 

generated the best performance in terms of initial position error and total velocity 

change for the chase vehicle. 
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Chapter 1 

Introduction 

Present rendezvous and docking procedures for the U.S. space program have relied 

heavily upon crew and ground involvement. The most taxing of all the phases in a 

rendezvous and docking mission is arguably the terminal phase of the rendezvous. 

Under present conditions, the pilot operations take precedence over nearly all the on- 

board guidance and navigation. The terminal approach is performed manually using 

visual cues and proximity data from extremely accurate sensors. However, rendezvous 

systems of this type are highly susceptible to pilot error and, considering the cost and 

complexity of the subsystems required, are expensive to perform on a regular basis. 

The future of the space program include plans for rendezvous and docking missions 

such as satellite servicing and unmanned cargo resupply of Space Station Freedom. 

Thus, the development of a reliable autonomous rendezvous and docking maneuver 

is an integral step for progress in the space program. The foundation for a reli- 

able AR&D maneuver is a navigational system which can accurately provide relative 

position and velocity throughout the entire docking procedure. 

1.1 Types of Rendezvous Maneuvers 

There exist two different types of terminal phase rendezvous maneuvers - docking and 

berthing maneuvers. In general, both types of procedures involve the maneuvering of 

a chase vehicle to meet a target vehicle in orbit so that the two vehicles can couple, 



presumably for purposes of mass transfer. Specifically, docking refer to maneuvers in 

which the chase vehicle flies directly into the target with a nonzero final velocity [l]. 

Berthing maneuvers refer to the use of an intermediate device, such as a manipulator 

arm, to grapple the chase vehicle as it is brought to a relative standstill near the 

target [l]. Thus, berthing maneuvers do not require a closing velocity between the 

two vehicles. While docking maneuvers provide the simplest means of coupling two 

vehicles in orbit, they do introduce some risk in the areas of collision, guidance, 

navigation, and control. 

1. .2 Current Sensor Technology 

Some of the most common sensors used to determine relative position are visual sen- 

sors and laser navigation sensors. These sensors are used since they can obtain the 

highly stringent accuracy requirements associated with terminal phase rendezvous 

and docking maneuvers. Visual sensors, such as video-only cameras and sophisti- 

cated automatic pattern recognition cameras [2], are susceptible to adverse lighting 

conditions and require high computer throughput [3]. Laser navigation systems re- 

quire the placement of reflectors on the target. Thus, a highly accurate knowledge 

of the reflector location relative to the target vehicle coordinate system is required. 

This essentially means that a complete knowledge of the target vehicle attitude is 

necessary for an accurate laser measurement. 

Both systems essentially require a direct line-of-sight between the chase and target 

vehicle. This partially accounts for the so-called R-bar and V-bar terminal approaches 

associated with current rendezvous and docking procedures in which the chase vehicle 

flies directly towards the target along the radial or tangential directions, respectively. 

While these two conventional navigation systems have provided adequate results 

for present rendezvous and docking missions, future autonomous rendezvous and 

docking (AR&D) missions, particular for unmanned vehicles, require a system that 

provides sufficiently accurate results while, at the same time, is not restricted by some 

of the limitations of visual sensors and laser navigation. 
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1.3 Global Positioning System Overview 

The Global Positioning System (GPS) is a constellation of navigation satellites and 

is a means of providing the US. military with accurate latitude, longitude, altitude, 

travel velocity, and time under any environmental conditions. This system was ini- 

tially proposed in the 1970’s with the first Navigation System using Timing And 

Ranging (NAVSTAR) GPS satellite launched in 1978 [4]. The present constellation 

consists of 24 satellite positions at an altitude of 10,924 nmi, with four satellites at 

each of the six 55 deg inclined equally spaced orbital planes [5] .  

GPS technology has developed to the point where it is now a means of providing 

an ideal on-board precision navigation and pointing capability for Low Earth Orbit 

(LEO) missions [6]. In fact, several flight experiments have been proposed which 

incorporate the use of GPS position and attitude determination for AR&D missions. 

One such proposed flight demonstration suggests an AR&D mission between a small, 

low-cost, NASA satellite powered by batteries and a cold gas thruster and the Ex- 

plorer Platform (EP) Spacecraft. Under this proposed scenario, the sensor system 

is comprised of a GPS receiver, a laser illuminator, and a video camera. The GPS 

receiver is used for both absolute and relative positioning for coarse guidance of up 

to 330 ft while the laser illuminator and the video camera are used for fine guidance 

c71. 
However, relative GPS position determination has improved to the point where 

inch accuracies are possible. Recent precision orbit determination experiments with 

the Ocean Topography Experiment (TOPEX)/Poseidon satellite have obtained radial 

ephemeris RMS difference accuracies to within 1.18 - 1.57 inches [SI. Ground sur- 

veying experiments using relative GPS have also obtained inch accuracies in relative 

position determination [9]. 

However, these accuracies are based on GPS data transmitted through the atmo- 

sphere. Thus, these accuracies can be affected by tropospheric delays, ionospheric 

delays, and multipath errors due to ground structures. In this study, it is conceivable 

that relative GPS accuracies between orbiting vehicles are much better than those 
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previously documented. Recent evaluations of relative GPS position determination 

for AR&D missions has shown that it is theoretically possible to obtain relative posi- 

tion accuracies to within 0.394 inches [lo]. Thus, it may be possible to replace optical 

sensors with relative GPS as a cheaper means of navigation. 

1.4 Scope of Investigation 

The scope of this investigation is to develop an open-loop guidance architecture for 

the terminal phase of an AR&D mission to determine whether relative GPS can be 

used in place of optical sensors. Figure (1.1) illustrates a schematic of the open-loop 

system. 

threshold 
_ _  - __ _ _  

I 

> non-realtim Avfc,Av2c thruster 
re/ative GPS 

Avfbv2 
5.  vehicle 

sequencer I management i 
initial 

Figure 1.1: Open-loop guidance architecture 
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The first step in the open-loop system is the use of non-real time relative GPS to 

determine the initial position of the chase and target vehicles. Once the threshold 

accuracy for the relative position between the vehicles is achie , the chase vehicle 

is given a fixed sequence of pre-determined AV commands. The final step in the 

open-loop process is the execution of the commands from the AV sequencer by the 

thruster management system. In addition to the firing laws, the thruster management 

system includes an inertial measurement unit (IMU). Thruster management laws can 

be affected by errors that are cause by finite burn-time effects and thruster errors. 

For short periods, the IMU would be used to correct these errors. The development 

of the guidance architecture is done in two steps. First, feasible command trajecto- 

ries are determined for one, two, and three impulse maneuvers. Second, a thruster 

management system is developed to execute these command trajectories. 

1.4.1 Feasible Command Trajectories 

In this study, feasible command trajectories govern the fixed sequences of impulses. 

These trajectories are determined for one, two, and three impulse AR&D maneuvers. 

Previous impulsive guidance research suggests that accuracies at docking are most 

sensitive to vertical position errors at the initial condition of the chase vehicle and 

is rather insensitive to horizontal position errors (see Appendix A). Thus, command 

trajectories are determined by using optimization methods to maximize the range 

of admissible initial vertical position errors of the chase vehicle. The maximized 

admissible vertical position errors for each of the command trajectories are compared 

to navigational accuracies attainable through relative GPS to determine whether it 

is a viable maneuver. Chapter 2 outlines the vehicle model, mission parameters, and 

mission constraints. Chapters 3, 4, and 5 detail the optimization formulation and 

command trajectory results for the various impulse maneuvers. 
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1.4.2 Thruster Management System 

The approach in developing the thruster management system is to determine opti- 

mal throttle settings for the chase vehicle thrusters to realize the impulse commands 

for the feasible command trajectories. A modulator is then required to determine 

minimum firing times based on these optimal throttle settings. This study presents 

the preliminary design of the thruster management system by developing the formu- 

lations to determine these optimal throttle settings. Chapter 6 outlines the specific 

chase vehicle thruster model and the basic optimization formulations. 
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Chapter 2 

Mission Description 

This chapter presents the basic assumptions for the mission, the vehicle model, the 

mission parameters, and the mission constraints for the terminal phase AR&D ma- 

neuver. 

2 , l  Basic Assumptions 

There are several basic assumptions which govern the type of AR&D maneuver de- 

termined by the command trajectories. First, it is assumed that the chase vehicle 

is on-orbit with the target and trails the target by some given distance, say 600 ft. 

While in its initial position, the chase vehicle is assumed to have no relative motion 

with respect to the target. Also, the docking mechanism is assumed to be located on 

the far side of the target vehicle. This requires an AR&D maneuver where the chase 

vehicle must fly to the front of the target vehicle to complete the docking mission. 

Finally, to obtain the highest degree of relative position accuracy using relative GPS, 

issues such as integer ambiguity and cycle slip are assumed to be resolved. 

2-2 Vehicle Model 

Several assumptions are made concerning the vehicle model. Since this study involves 

the terminal phase of an AR&D maneuver, equations are determined which govern 
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the motion of the chase vehicle relative to the target vehicle for small perturbations 

about a reference orbit. In this case, the reference orbit is assumed to be the circular 

orbit of the target vehicle. This naturally assumes that the radial component of 

the target velocity does not change with respect to time and with respect to the 

orbital position. Conversely, if the reference orbit had a slight eccentricity, such 

an assumption concerning the radial velocity component of the target vehicle would 

not be true. Furthermore, the orbital angular velocity of the target vehicle, w, is 

also assumed to be constant. Thus, the transfer angle between the chase and target 

vehicle is simply the product of the angular velocity and the transfer time At. 

The dynarnical model and coordinate system for the rendezvous and docking mis- 

sion are constituted by the Clohessy-Wiltshire equations [ll]. This is a Cartesian 

coordinate system centered on a target assumed to be in a circular orbit and involves 

linear time-invariant dynamics. The Clohessy-Wiltshire equations are also known as 

Hill’s equations and have been used to analyze the relative motion of two satellites 

in orbit in close proximity to each other. The model presented in this report rep- 

resent the motion in the vertical plane. The geometry is shown in Fig. (2.1). The 

target-centered Cartesian coordinate system is orientated such that the y-axis is al- 

ways pointing radially outward from the center of the Earth and the x-axis is pointing 

in the opposite direction of the target vehicle velocity vector. In this representation, 

the x and y-axes are in the orbit plane. 

For the target-centered coordinate system, the in-plane linearized equations of 

relative motion for the chase vehicle are Ell] 

8 
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Figure 2.1: Coordinate system geometry 

The solution to Eqn. (2.1) results in an in-plane chase vehicle motion governed 

by [111 

where 

Yo = (ai,( At) 

r 
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2.3 Mission Constraints 

This section presents the target accuracy requirements of the AR&D mission and the 

motivation behind and the requirements of the gate constraints. 

2.3.1 Basic Target Constraints 

The orbital altitude, h, of the target vehicle is approximately 255 mi. Table (2.1) 

lists the allowable position and velocity tolerances at the target for the chase vehicle. 

For this particular AR&D problem, the chase vehicle must be within a vertical (y- 

axis) accuracy of f0.591 in and a maximum speed tolerance of 0.591 in/s (priv. 

communication - Mr. Fred Roe, MSFC - April 30, 1993). These constraints assume 

that the chase vehicle motion is restricted to the orbital plane. 

Table 2.1 : Target accuracy requirements 

With the docking accuracies set, the target constraints for the constrained opti- 

mization problem which must be satisfied by the chase vehicle are represented as 

Ctarg  = (2.4) 
y ( t t a r g )  I Ytarg  

y(ttu7.g) L -Ytarg 

k 2 ( t t a r g )  + G2( t targ )  I Vt"arg 
where ytarg > 0. The first of Eqn. (2.4) requires that the chase vehicle physically 

docks with the target at the transfer time of tturg. The remainder of Eqn. (2.4) 

are the vertical position tolerance and the maximum speed tolerance summarized in 

Table (2.1). 
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2.3.2 Additional Constraints 

Previously unpublished work has been done for this type of impulsive AR&D com- 

mand trajectory. Appendix A outlines the basic formulation and presents some basic 

results for this earIy AR&D research. In summary, the early AR&D results suggests 

two points. First, accuracy at docking seems most sensitive to the initial vertical PO- 

sition errors of the chase vehicle. Second, early simulation results show that, with just 

target constraints, optimized trajectories for the chase vehicle tend to approach the 

target tangentially. While handling vertical position sensitivity is presented later in 

this work, the simulation results shown in Fig. (A.2) justify the need for additional 

chase vehicle constraints to generate a more direct and predictable final approach 

towards the target vehicle. 

For this particular problem, it is assumed that the target docking port is facing the 

same direction as the target vehicle velocity vector. Thus, the command trajectory 

for the chase vehicle must approach the target from the negative x-axis. While any 

docking approach could have been chosen, this particular type of approach takes 

advantage of the target vehicle velocity. Recall that the target motion is in the 

negative x-axis direction. A final approach trajectory from that direction requires 

less total velocity change by the chase vehicle. To generate such a trajectory, a 

gate constraint placed at an arbitrary position ahead of the target is added to the 

optimization problem. Figure (2.2) displays the desired final approach trajectory for 

the chase vehicle. The exact position of the gate geometry relative to the target is 

listed in Table (2.2). While these particular parameters are arbitrarily chosen, an 

appropriate gate position for actual flight experiments would be highly dependent 

upon the configuration of the chase and target vehicles. The gate position must be 

chosen such that the docking procedure does not result in any collisions between 

possible extended appendages present in the vehicle configurations. Note that the 

illustration in Fig. (2.2) is not drawn to scale. 
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Figure 2.2: Maneuver constraints geometry 

Table 2.2: Gate constraint position 
n I 11 

Category Accuracy 
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Based on this trajectory approach requirement, the gate constraints for the chase 

vehicle are represented as 

i ( t g a t e )  L 0 

5 ( t g a t e )  = zgate 

Y ( t g a t e )  I Ygate 

Y ( t g a t e )  2 -ygate 

Cgate = 

where ygate > 0. The first portion of Eqn. (2.5) is the mathematical representation 

that the chase vehicle must eventually approach the target from the negative x-axis 

direction at the transfer time of tgate. The remaining portions of Eqn. (2.5) are just 

the geometric constraints listed in Table (2.2). 

As a final assurance that the approach trajectory is from the negative x-axis 

direction, an additional constraint must be added to Eqn. (2.4). Equation (2.6) 

controls the horizontal component of the chase vehicle velocity at the target insuring 

that the final chase vehicle motion is in the positive x-axis direction. 

To completely quantify this final approach trajectory, Eqn. (2.6) must be added 

to the target constraints. Thus, the complete target constraints for the constrained 

optimization problem are expressed as 
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Chapter 3 

Single Impulse AR&D Maneuver 

This chapter develops a single impulse command trajectory. The single impulse com- 

mand trajectory is determined by maximizing the locus of initial vertical positions 

for which a single impulse translates the chase vehicle into the target while satisfying 

all gate and target constraint conditions outlined in Chapter 2. This locus of vertical 

positions is expressed as 

Yo = {Y = Yo + SY, ISY I I AYOI (3.1) 

The scalar cost function for the AR&D trajectory optimization is, accordingly, 

where Ayo > 0. For each command trajectory, the free parameters of the problem 

are zo, YO, AYO, 50, Yo, (ttarg)y7 and ( t g a t e ) y -  The parameters ( t t a r g ) y  and ( t g a t e ) y  

correspond to target and gate times for different trajectories emanating from (zo, y) 

where y e yo. In the results generated for the single impulse command trajectories, 

the parameter zo is selected by the user. To simplify the notation, the set of free 

parameters for each trajectory in the single impulse maneuver is expressed as 
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While results are presented for the single impulse AR,&D command trajectories, 

the initial portion of this chapter illustrate the individual steps taken in the research 

to mathematically determine this locus of admissible initial vertical positions for the 

chase vehicle. 

3.1 Constrained Trajectories 

While maximizing Ayo provides a means of determining this locus of initial vertical 

positions, no mention has yet been made on how to represent Ayo. In this section, the 

steps taken in the research are presented individually to show how a set of constrained 

trajectories are used to quantify Ayo. These constrained trajectories are actual op- 

timized trajectories of the chase vehicle which satisfy gate and target constraints of 

Eqns. (2.5) and (2.7), respectively. 

3.1.1 Two Trajectory Formulation 

A straightforward method of maximizing Ayo is to use a two trajectory approach. In 

this method, determining the uppermost (Sy > 0) and lowermost (Sy < 0) vertical 

trajectories about the nominal initial chase vehicle position, xo and yo, will in essence 

determine the maximum Ayo. Thus, for a given xo, the maximum admissible vertical 

position error is determined by maximizing Eqn. (3.2) subject to two sets of gate and 

target constraints, i.e. 

where Ctarg and Cgute are represented in Eqns. (2.7) and (2.5);  respectively. Two 

sets of gate and target constraints are needed since two trajectories are propagated 

towards the target and each of these trajectories must satisfy all constraints. 
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However, one issue associated with this approach is that it assumes all the in- 

termediate trajectories for the chase vehicle emanating from y e & satisfy gate and 

target constraints. To test this assumption, an optimization routine is performed 

based on Eqns. (3.2) and (3.4) at zo = 600 ft. All constraints are determined as 

a function of initial vertical position. Unfortunately, the interior trajectories do not 

satisfy all gate and target constraints as is assumed. In fact, only one constraint is 

not satisfied. Figure (3.1) graphically represents the target constraint relation 

Physically, this represents the difference between the final chase vehicle vertical posi- 

tion and the maximum vertical position target tolerance. For fully satisfied interior 

trajectories, this constraint value must be less than zero, but as can be seen from Fig. 

(3.1), this is not the case. 

Initial vertical emr about nominal, A y (in) 

Figure 3.1: Maximum vertical tolerance target constraint for the chase vehicle 
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3.1.2 Three Trajectory Formulation 

Since interior trajectories do not satisfy constraints, any solution obtained from such 

a formulation is unreliable. However, the problem at hand is still to maximize the 

locus of initial vertical positions for the chase vehicle. Thus, the optimization routine 

must be reformulated so that all interior trajectories do in fact satisfy gate and target 

constraints. 

A seemingly simple solution to this problem is to add a third middle trajectory to 

the formulation. This additional middle trajectory can act to constrain the behavior 

of ey such that it is satisfied for all interior trajectories. While the original cost 

function is still valid, an additional set of gate and target constraints is applied to 

this third trajectory. The modified problem statement is to maximize Eqn. (3.2) 

subject to Eqn. (3.4) and, additionally, 

This modified problem statement still, however, assumes that all interior trajecto- 

ries, in addition to the three already specified, satisfy all gate and target constraints. 

Figure (3.2) illustrates the same constraint relation as in Fig. (3.1) with the additional 

results stemming from the three trajectory formulation. 

Figure (3.2) does illustrate the fact that including an additional trajectory to 

the problem statement almost satisfies Eqn. (3.5). While a majority of all possible 

interior trajectories do satisfy gate and target constraints, a small portion still do not 

satisfy the problem formulation assumption. 
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Initial vertical error about nominal, Ay (in) 

Figure 3.2: Vertical tolerance constraint comparison between two trajectory 

trajectory formulations 

and three 

3.1.3 Quadratic-Fit Formulation 

Visual examination of Fig. (3.2) suggests that it may be possible to control the 

entire constraint behavior by taking advantage of what appears to be a parabolic 

relationship in Eqn. (3.5). By using the individual constraint values obtained from the 

three trajectory formulation, a quadratic relation between these values and the initial 

relative vertical position of the chase vehicle can be determined using Lagrange’s 

interpolating polynomials. Using this quadratic model, the constraint behavior in 

Eqn. (3.5) can be controlled to be less than or equal to zero by forcing the quadratic 

to be less than or equal to zero at its maximum point. 

Lagrange Interpolating Polynomials 

The first step in this process is to determine the coefficients for the Lagrange inter- 

polating polynomial. Equations (3.7) and (3.8) represent the general formulation for 

an nth order Lagrange interpolating polynomial [la]: 
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where i # k and xi and f(q) are the given data points and corresponding function 

values, respectively. 

However, this particular problem only involves a second-order interpolating poly- 

nomial. Thus, Eqns. (3.7) and (3.8) can be reduced to 

Equations (3.9) and (3.10) can be rearranged and expressed in the more familiar 

form of a second-order polynomial, i.e. 

P(.) = D0Z2 + DlZ + 0 2  (3.11) 

where the polynomial coefficients are defined as 

(3.12) 

(3.13) 
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(3.14) 

(3.15) 

Quadratic Constraint Formulation and Results 

Equations (3.11), (3.12), (3.13), (3.14), and (3.15) constitute the set of relations which 

are used to model the constraint behavior of Eqn. (3.5). To insure that the constraint 

is always satisfied, the maximum point of Eqn. (3.11) must be no greater than zero. 

Thus, a single constraint is added to the three trajectory optimization formulation. 

First, a quadratic is fit to the constraint relation behavior, Le. 

where q( y ) is simply the second-order Lagrange interpolating polynomial. Equation 

(3.16) has a single maximum point which occurs at 

(3.17) 

Assuming that Eqn. (3.5) is sufficiently modeled by Eqn. (3.16), then the additional 

constraint 

d y e )  L 0 (3.18) 

is adequate for enforcing the interior trajectory constraint assumption. 
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Figure (3.3) compares the interior constraint relations for the various methods 

discussed. It appears that the quadratic model assumption for the constraint relation 

is valid, and by implementing the quadratic constraint, the violated constraint be- 

havior can be control such that the interior trajectory assumption is satisfied. Figure 

(3.3) also illustrates that as ey improves from the two trajectory to the three trajec- 

tory, quadratic-fit formulation, there exists an overall loss in performance, i.e. Ago 

decreases. However, the slight loss in performance is necessary to insure the validity 

of the optimized solutions. 

-'3.6 -0.4 -0.2 0 0.2 0.4 0.6 
Initial vertical error about nominal. A y (in) 

Figure 3.3: Vertical tolerance constraint comparison between two trajectory, three 

trajectory, and three trajectory with quadratic constraint formulations 

A major assumption with the additional quadratic-fit constraint is that the con- 

straint behavior of ey is adequately modeled by a second-order polynomial. Appendix 

B summarizes the derivation for the relationship between the final and the initial chase 

vehicle relative vertical position. Based on typical solutions, the analytic solution 

shows that the relationship is in fact quadratic. 

21 



Formulation Summary 

To maximize the locus of initial vertical position errors represented in Eqn. (3.1), the 

scalar cost function for the AR&D mission is expressed as Eqn. (3.2). To quantify 

this cost function, a constrained trajectory optimization problem is proposed based on 

a three trajectory, quadratic-fit formulation. In short, the constrained optimization 

problem is to maximized Eqn. (3.2) subject to Eqns. (3.4), (3.6), and (3.18). 

3.2 Single Impulse AR&D Results 

With the problem statement properly formulated, valid results can be presented for 

the single impulse guidance maneuver. Recall that the problem is to determine feasi- 

ble command trajectories where the chase vehicle is assumed to initially start several 

hundred feet behind the target. 

3.2.1 Optimized Results for a Single Initial Position 

Figures (3.4) and (3.5) display the progression of the chase vehicle with respect to 

time. Figure (3.6) is a simulation of the in-plane relative position for all three opti- 

mized trajectories. Finally, Figs. (3.7) and (3.8) illustrate the early progression and 

the final approach, respectively, of the chase vehicle for all three trajectories. These 

results are based on an initial relative horizontal position, x g ,  for the chase vehicle of 

600 ft. 

Figures (3.7) and (3.8) illustrate the quadratic behavior between the initial verti- 

cal position and the final vertical position of the chase vehicle. The lower trajectory 

appears to initially swing out further than the upper trajectory while the third trajec- 

tory stays the middle course. However, Fig. (3.8) displays very different results. An 

initial middle vertical position results in a final vertical position near the maximum 

position tolerance at the target. However, an initial upper vertical position results in 

a final vertical position very close to nominal. Lastly, an initial lower vertical position 

results in a final vertical position near the minimum position tolerance at the target. 
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The free time parameter, ttarg, converged to a transfer time of approximately 95 

minutes which is approximately one orbital rotation. Finally, the performance, Ayo, 

for this particular initial chase vehicle position is determined to have a maximum 

value of 0.457 in. However, this performance is based on a single initial chase vehicle 

position. Since initial relative horizontal position is a user-defined parameter, it is 

possible to generate a family of results based on this relative position. The maximum 

overall performance can then be determined. 

Figure 3.4: Horizontal relative position for chase vehicle starting at xo = 600 ft 
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20 40 60 80 100 
-140; 

Time (minutes) 

Figure 3.5: Vertical relative position for chase vehicle starting at xo = 600 f t  

Figure 3.6: Trajectory simulation for the chase vehicle starting at xo = 600 ft 
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3.7: Early trajectory for the chase vehicle starting at xo 
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Figure 3.8: Final approach trajectory €or chase vehicle starting at xo = 600 f t  
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3.2.2 Family of Optimized Results 

By defining a range of initial relative horizontal positions, a family of results can 

be obtained for the single impulse command trajectory. Examining the performance 

trend for this family of results can be used to determine the highest overall cost value 

and to ascertain whether the scheme is navigationally robust to allow a successful 

single impulse AR&D maneuver. 

Figure (3.9) displays the optimal cost of Eqn. (3.2) as a function of the initial 

relative chase vehicle position, xo. Figure (3.10) depicts the corresponding variation 

in the impulse velocity components. Figure (3.11) is related to Fig. (3.10) in that 

it illustrates the impulse speed with respect to the chase vehicle’s initial relative 

position. Finally, Fig. (3.12) depicts the chase vehicle speed at the target. 

Over the range of approximately 450 ft to 825 ft, Fig. (3.9) shows that the cost 

function in relation with 50 is roughly piecewise linear with a change in slope occurring 

at approximately xo M 675 ft. Also, solutions above 825 ft could not be obtained. 

Both phenomena are likely due to the fact that the terminal velocity constraint of 

the chase vehicle becomes active. From Fig. (3.12)) as 20 approaches 825 ft, the 

chase vehicle speed at the target approaches the maximum speed tolerance of 0.591 

in/s. This terminal speed condition shown is also the reasonable cause behind the 

sudden drop in the vertical impulse component depicted in Fig. (3.10). The drop in 

the vertical impulse component balances the the gradual increase of the horizontal 

impulse component to 0.591 in/s. 

Based on these results, the total accuracy requirement, 2Ay0, for the single impulse 

command trajectory at xo = 600 ft  is 0.914 in. This is slightly below the range 

documented in relative GPS accuracy experiments [8, 9, 101. While the accuracy 

requirement may be attainable, it certainly would be prudent to generate command 

trajectories with much more relaxed relative position accuracies between the chase 

and target vehicles. 
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Figure 3.9: Performance robustness with respect to initial relative horizontal chase 
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Figure 3.10: Initial impulse components with respect to initial relative horizontal 

chase vehicle position 
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3.11: Initial impulse speed with respect to initial relative horizontal 
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Figure 3.12: Terminal chase vehicle speed with respect to initial relative horizontal 

chase vehicle position 
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Chapter 4 

Two Impulse AR&D Maneuver 

The degree of vertical position accuracy required for a single impulse AR&D com- 

mand trajectory is rather stringent under certain initial chase vehicle positions. It 

is desirable to develop a command trajectory with enough freedom to provide the 

required accuracy based on relative GPS position determination. With a two impulse 

command trajectory, up to three additional degrees-of-freedom are possible due to 

the parameters defining the second impulse. These additional parameters are ii, the 

horizontal velocity component of the second impulse, $i, the vertical velocity compo- 

nent of the second impulse, and t i ,  the application time of the second impulse. In the 

results generated for the two impulse command trajectories, the parameters 50 and ti 

are selected by the user. For each constrained trajectory, the free parameters are ZO, 

yo, Ayo, i o ,  $0, &, $;, ti, ( t t a r g ) y ,  and (tgate)y. For a simpler notation, the parameters 

are defined as 

29 



4.1 Optimization Formulation 

c g u t e ( ~ 2 ( ~ 0  + AYO)) ’ 

C w t e ( - T 2 ( ~ 0 ) )  

. C g a t e ( & ( ~ o  - Ago)) 

Cturg(F2(YO + Ago)) 

Ctarg ( 3 2 ( Y o ) )  

Cturg(F2(Yo - AYO)) , 

The problem statement is to optimize Eqn. (3.2) subject to Eqn. (3.18) and 

+ 

Ctimel = { t;  5 tgute (4-3) 

Since all three trajectories must satisfy this constraint, Eqn. (4.3) imposes the 

following set of constraints to the problem formulation 

(4.4) 1 Ctirnel(F2 ( Y O  + AYO)) 

Ctimel ( & ( Y O ) )  

Ctimel (F2( YO - Ago)) 

Another advantage of Egn. (4.4) is that it helps to control plume contamination or 

plume impingement. For close proximity maneuvers between orbiting vehicles, the 

firing of thrusters by one vehicle can cause adverse effects in the desired relative mo- 

tion with the other vehicle. In this particular problem, the target vehicle is assumed 

to be in a fixed position relative to the chase vehicle. A close proximity impulse 

firing by the chase vehicle can contaminate the assumed fixed position of the target 

vehicle. By requiring that the second impulse be fired at or before encountering the 

gate constraint, plume contamination can be controlled. 
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4.2 Two Impulse AR&D Results 

To generate an appropriate performance comparison between the single impulse and 

the two impulse command trajectories, a family of results is generated where xo is 

fixed at 600 ft. 

4.2.1 Optimization Results 

Figure (4.1) displays the cost function variation with respect to ti at xo = 600 ft. 

Figures (4.2) and (4.3) represent the initial impulse and second impulse velocity 

components, respectively, with respect to ti. Figures (4.4) and (4.5) displays the 

variation of the individual impulse magnitudes and the total AT/ of the chase vehicle 

with respect to ti. 

Second impulse time, ti (min) 

Figure 4.1: Performance robustness for two impulse maneuver at $0 = 600 ft 
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Figure 4.2: Variation of initial impulse components at xo = 600 ft 

600 ft  
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Figure 4.4: 
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Figure 4.5: Total speed change with respect to second impulse time at xo = 600 f t  
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As compared to results documented in Chapter 3, two impulse command trajec- 

tories produce nearly a 60.5% increase in performance, i.e. Ayo increases to 0.728 in 

for a total required GPS accuracy of 1.46 in. In fact, Fig. (4.1) reveal that the perfor- 

mance remains nearly constant regardless oft;. Figures (4.2), (4.3), (4.4), and (4.5) 

illustrate the different command trajectories available at 20 = 600 ft. Unlike single 

impulse results, there is no identifiable trend in the various velocity components. Fur- 

thermore, when compared to single impulse results, the total velocity change of the 

chase vehicle increases nearly an order-of-magnitude. Physically, this indicates that 

greater fuel expenditure is required to perform the two impulse command trajectories. 

However, examining all the above figures reveal that there is a visible trend change 

at t; = 4000 seconds ( m  66.67 minutes). These trends correspond closely with the 

changes in the gate and target times for the chase vehicle depicted in Fig. (4.6). This 

figure shows that the second impulse times are exactly equal to the gate times, tgate. 

In other words, within this region, Eqn. (4.4) is active. Other adverse results are also 

visible. First, the performance gradually decreases, i.e. greater positional accuracy 

is required of the chase vehicle. Second, the second impulse velocity components and 

magnitude gradually approach zero, i.e. the initial impulse begin to dominate. Thus, 

based on these indicators, it is fairly safe to  surmise that for larger second impulse 

times the two impulse command trajectory results gradually approach single impulse 

command trajectory results. 

4.2.2 Simulation Results 

While Figs. (4.1) - (4.5) illustrate the various command trajectories for xo = 600 ft, 

it may be desirable to determine the best overall two impulse command trajectory. 

At 20 = 600 ft, this would appear to occur at approximately t; = 3000 seconds (50 

minutes). This assessment is based on considering both the cost performance and the 

required AV. Based on Figs. (4.1) and (4.5), the performance is 0.731 in with a AT/ 

of 1.26 in/s. Clearly, the AV is not the absolute lowest but is a fairly good estimate 

of the local minimum given a desired high performance. 
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4 

Figure =. Gate and target times for upper trajectories at xo = a 

Figures (4.7), (4.8), (4.9), and (4.10) are the trajectory simulation results for 

initial conditions of xo = 600 f t  and ti = 3000 seconds. When compared to single 

impulse results, two impulse simulations do not appear much different. However, 

the final approach trajectories do appear to be slightly different than the approach 

trajectories for the single impulse simulations at xo = 600 ft. Furthermore, when 

examining Fig. (4.10), the initial change in the relative vertical position of the chase 

vehicle is much more abrupt than results obtained in Chapter 3. This would indicate 

that the vertical component of the initial impulse is greater in magnitude for the two 

impulse command trajectory. Finally, also note that the total transfer time for the two 

impulse command trajectory is considerably less than the single impulse command 

trajectory. 
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Figure 4.7: Two impulse simulation for chase vehicle starting at xo = 600 ft with a 

second impulse time of 3000 seconds 

Figure 4.8: Two impulse final approach trajectories for the chase vehicle starting at 

xo = 600 ft with a second impulse time of 3000 seconds 
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Figure 4.9: Horizontal relative position for chase vehicle starting at xg = 600 ft with 

a second impulse time of 3000 seconds 

Figure 4.10: Vertical relative position for chase vehicle starting at xo = 600 ft  with a 

second impulse time of 3000 seconds 
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As a comparison fqr other two impulse maneuvers, Figs. (4.11) - (4.13) and Figs. 

(4.14) - (4.16) simulate command trajectories at second impulse times of 1000 seconds 

(- 16.67 minutes) and 5000 seconds (- 83.33 minutes), respe 

Simulation results for t; = 1000 seconds show a very abrupt change in the optimal 

chase vehicle trajectory at the second impulse firing. This corresponds with earlier 

results indicating that the second impulse velocity components dominate the required 

velocity change for the chase vehicle at early second impulse firings. Furthermore, 

Fig. (4.13) reveal that the chase vehicle trajectory propagates to relatively lower 

positions than earlier simulation results. Finally, it is important to note that while 

these particular results are different than simulation results at t; = 3000 seconds, the 

performance values between the two simulations are nearly equivalent. 

Examination of Figs. (4.14) - (4.16) reveal that simulation results for ti = 5000 

seconds are similar to results obtained for a single impulse maneuver. This clearly 

implies that two impulse command trajectories approach single impulse command 

trajectories as t; increases. 

20 I I I I I I I 

Figure 

second 
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Figure 4.12: Horizontal relative position for chase vehicle starting at xo = 600 ft  with 

a second impulse time of 1000 seconds 

Figure 

second 

= 600 ft with a 
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Figure 4.14: Two impulse simulation for chase vehicle starting at xo = 600 ft with a 

second impulse time of 5000 seconds 

20 40 60 80 
Time (minutes) 

-100; 
9 

Figure 4.15: Horizontal relative position for chase vehicle starting at xo = 600 ft with 

a second impulse time of 5000 seconds 
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Figure 4.16: Vertical relative position for chase vehicle starting at xo = 600 ft with a 

second impulse time of 5000 seconds 
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Chapter 5 

Three Impulse AR&D Maneuver 

Results from the two impulse AR&D command trajectory suggest that two impulse 

maneuvers can provide a viable solution to the terminal phase rendezvous and docking 

problem presented in this study. However, for the three impulse command trajectory, 

the performance may be improved by the addition of up to three degrees-of-freedom 

due to the parameters defining the third impulse. These additional parameters are 

xii, the horizontal velocity component of the third impulse, &i, the vertical velocity 

component of the third impulse, and tii, the application time of the third impulse. 

In the results generated for the three impulse command trajectories, the parameters 

20, ti, and tii are selected by the user. For each constrained trajectory, the free 

parameters are 50, YO, Ayo, 20, Yo, ;it Yi, i i i ,  Yii, ti, tiit (ttarg)y, and ( t g a t e ) y -  For a 

simpler notation, the parameters are defined as 

-F~(Y) {Y, ( t t a r g ) y ,  ( t g a t e ) y ,  YO, ii, Yi, i i i ,  Yii ; 30,ti, tii} ( 5 4  

where y E Yo and Yo is defined in Eqn. (3.1). 

5.1 Opt irnizat ion Forrnulat ion 

The three impulse problem formulation is to maximize Eqn. (3.2) subject to Eqn. 

(3.18) and 
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An additional set of time constraints are also required. These constraints insure 

the proper and successive firings of the second and third impulses. Since impulse 

times are user-defined parameters, the additional constraint requires that the time of 

the third impulse firing, t;i, occurs before the chase vehicle reaches the gate constraint. 

The following equation represents this condition. 

ctirne2 = { ti; 5 tgate (5-3) 

Since the three trajectory, quadratic-fit formulation is being utilized, Eqn. 

imposes the following set of constraints to the problem statement 
(5.3) 

(5.4) 1 &me2 (3?3 (YO + AYO)) 

&mea (3?3 (YO)) 

&me2 (F3(YO - AYO)) 

As with the two impulse command trajectory formulation, these constraints also help 

to control possible plume impingement. 

5.2 Three Impulse AR&D Results 

To compare between the various impulse command trajectories, the initial horizontal 

separation, 20, is set at 600 ft. Thus, a “3-D” family of results is generated dependent 

upon t; and ti;. 

The overall effectiveness of the three impulse command trajectory is the enhance- 

ment, if any, in the performance of the problem. Figure (5.1) illustrates the scalar 
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cost function based on varying the second and third impulse times. In this repre- 

sentation, the second impulse firing times range from 1000 seconds after the initial 

impulse to 3050 seconds after the initial impulse while the third impulse firing times 

range from 2000 seconds after the initial impulse to 4100 seconds after the initial im- 

pulse. Clearly, not all possible solutions are represented in this Fig. (5.1). Due to the 

extreme complexity of the problem, determining all possible command trajectories 

based on impulse times is beyond the scope of this study. However, Fig. (5.1) does 

provide a fairly decent representation of the type of solutions generated by the three 

impulse optimization problem. Closer examination of Fig. (5.1) reveal that naviga- 

tional robustness results are similar to the comparable results generated by the two 

impulse command trajectory. In fact, no significant improvement in the cost function 

is achieved by implementing a three impulse command trajectory. 

A clearer view of the similarity between the three impulse solutions and the two 

impulse solutions is seen in Fig. (5.2). This illustration is essentially the same as Fig. 

(5.1) except it is seen from the third impulse time axis. As seen from this particular 

orientation, the solution to the three impulse optimization formulation is essentially 

the same as the two impulse formulation. A further comparison of the two command 

trajectories appear to indicate that the behavior of Ayo is highly dependent upon the 

final impulse and not on the previous impulse firings. 

44 



Figure 5.1: Performance robustness with respect to second and third impulse times 

at xo = 600 ft  
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Figure 5.2: Performance robustness with respect to third impulse times 

However, while the increase in performance is insignificant, the AV experienced 

by the chase vehicle in the three impulse command trajectory is extreme. Table (5.1) 

places the slight increase in performance obtained by the three impulse command 

trajectory in perspective by comparing it to similar results generated by the two 

impulse command trajectory. In the tabulated results, both schemes are initiated 

with the chase vehicle starting at 600 f t  behind the target vehicle. The two impulse 

command trajectory results are based on a second impulse firing time of 1000 seconds 

after the initial impulse while the three impulse command trajectory results are based 

on second and third impulse firing times of 1000 seconds and 2020 seconds after 

the initial impulse, respectively. While the performance has a marginal increase of 

0.41%, the total AV required of the chase vehicle increases by 49.88%. Thus, the 

implementation of a three impulse command trajectory over a two impulse command 

trajectory is not warranted when considering the subsequent increase in fuel cost in 

relation to the slight improvement in performance. 
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Table 5.1: Percent increase comparisons between the two impulse command trajectory 

and the three impulse command trajectory 
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Chapter 6 

Thruster Management System 

Recall from Chapter 1 that the assumed guidance architecture is an open-loop system 

utilizing relative GPS for initial position determination. While previous chapters 

detail the work in determining optimized command trajectories, this chapter examines 

the preliminary steps taken to complete the guidance architecture. 

6.1 Cargo Transfer Vehicle (CTV) 

The first step in designing the thruster management system is to determine the ref- 

erence design for the chase vehicle. The reference design utilized for the AR&D 

simulations will be NASA’s cargo transfer vehicle (CTV). The CTV has an empty 

mass of 308.1 slugs and has twenty-four 11.24 lbf thrusters. These thrusters are used 

for orbit transfer and attitude control. Table (6.1) lists the normalized force vector 

and the thruster location with respect to the CTV origin while Table (6.2) lists the 

CTV and payload mass properties (priv. communication - Mr. Richard Dabney, 

MSFC - Sept. 28, 1994). 

The basic concept for the thruster management system is two-fold. Due to the 

amount of thrusters available on the CTV, optimal throttle settings for each of the 

thrusters are determined such that the resulting motion is purely translational. In 

other words, given an impulse command from the command trajectories, theoreti- 

cal throttle settings are determined such that the desired AV is generated with no 
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Table 6.1: CTV thruster location and force vector directions 
.. 

Normalized Thruster 

Thruster force vector location (ft) 

0.00 

24 
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Table 6.2: CTV and payloads mass properties 

Empty CTV 

Propellants 

Payload 1 

Payload 2 

M a s  (slugs) I, (slugs-ft 2, I,, (slugs-ft 2, 122 (slugs-ft 2, 

308.1 57.24 50.09 50.09 

308.1 32.20 37.57 37.57 

855.8 159.0 185.5 185.5 

1712 318.0 371.0 371.0 

Payload 3 

resultant moment experienced by the CTV. However, since most thrusters used in 

space are not throttlable, the second part of the control system involves developing a 

modulator which uses the optimal throttle settings to determine the minimum firing 

times for each of the thrusters. 

In designing the thruster management system for the CTV, this study focuses 

upon developing the formulations for determining optimal throttle settings given de- 

sired impulse commands. Completing the thruster management system would simply 

involve developing a modulator to determine minimum firing times and a trajectory 

correction mechanism to account for non-impulsive motion. No effort was made in 

developing the modulator or trajectory correction mechanism. 

1712 318.0 1007 1007 

6.2 Thruster Firing Concept 

In terms of control, probably the most difficult issue to handle is not the translational 

motion of the vehicle but rather the rotational motion and the ensuing rotational 

dynamics associated with such a motion. Since the two impulse command trajectory 

assumes a point mass with no rotational dynamics, it would be desirable to implement 

a thruster management system which determines the optimal thruster firings for pure 

translational motion given a desired AV. In many vehicle configurations, it would 

probably not be possible to utilize such a control scheme but since the CTV model 

consists of twenty-four thrusters (twice the amount theoretically required for 6-DOF), 
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a thruster management concept in this manner should be possible regardless of the 

type of AV required by the command trajectory. 

6.2.1 Formulations for Optimal CTV Thruster Firings 

The thruster management concept is based on determining the minimum theoretical 

throttle settings for each thruster to accomplish the inputted guidance commands such 

that no rotational motion results from the thruster firings. Since throttle settings must 

be positive values, the mathematical model for each of the thrusters are represented 

as 

where j = 1,2,  . . . ,24, E' represent the normalized force vectors for each thruster, and 

a; represent the throttle setting ranging from zero to one. 

The scalar cost function is to minimize the sum of all the thruster magnitudes. 

This is the equivalent to stating that 

24 

j=1 

However, since the normalized force directions are unit vectors, the magnitude of Cis 

simply equal to one. Thus, the cost function can be simplified to the following 

24 J-=Ca; 
j=1 

(6-3) 

The scalar cost function is constrained to two criteria. First, the throttle settings 

must produce a resultant force vector such that the resulting vehicle motion proceeds 

in the desired velocity direction. Second, the CTV must move in pure translational 

motion. Thus, the sum of all the moments generated by the different thrusters must 

be equal to zero. Mathematically, the constraints can be expressed as the following 

51 



It is important to note that while, mathematically, the constraints are represented as 

two equations, the constraints themselves are vectors which must be zeroed. 

6.2.2 Solving the Thruster Firing Optimization Problem 

The thruster management problem is solved using a step-restricted Newton-Raphson 

routine. The routine is implemented to solve the necessary conditions generated by 

the Lagrangian [13]. The Lagrangian is defined as the following 

The unknowns in this problem are the 24 throttle settings and the Lagrange multiplier 

vectors. To insure that the throttle settings are always positive, the Newton-Raphson 

routine solves for the square root of the throttle settings, i.e. aj. Using (6.6), the 

necessary conditions are as follows 

Recalling that the constraints are vector constraints, the throttle optimization for- 

mulation requires 30 necessary conditions. 

6.2.3 Representative Throttle Setting Results 

Figures (6.1) and (6.2) illustrate some representative results for optimal throttle set- 

tings given a desired impulse direction. Figure (6.1) display optimal throttle settings 

when the desired velocity change is in the positive unit axis direction. Likewise, Fig. 
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(6.2) display optimal throttle settings when the desired velocity change is in the nega- 

tive unit axis direction. Each individual subplot in the figures represent optimization 

results from the step-restricted Newton-Raphson routine. 

u) Unit impube in +Y dir&ion 
Q) 

5 10 15 20 25 

Thruster number 

Figure 6.1: Optimal throttle settings for positive axial direction unit impulses 
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! Unit impu$e in -Y dire&ion 11. 1 S I  I I I r I  

Figure 6.2: Optimal throttle settings for negative axial direction unit impulses 
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Chapter 7 

Summary and Recornmendations 

This study focused upon the development of an open-loop guidance architecture for 

the terminal phase of an autonomous rendezvous and docking (AR&D) mission to 

determine the capability of using the Global Positioning System (GPS) for initial rela- 

tive position determination instead of conventional optical sensors. The development 

of the guidance architecture was performed in two steps. First, feasible command 

trajectories were determined for one, two, and three impulse maneuvers. Second, a 

thruster management system was developed to execute these command trajectories. 

Several assumptions were made concerning the type of terminal phase docking 

maneuver. First, the chase vehicle was on-orbit with the target and trailed the target 

by a given distance. Second, while at its initial position, the chase vehicle was assumed 

to have no relative motion with respect to the target. Third, the docking mechanism 

was assumed to be located on the far side of the target vehicle. This required a 

docking maneuver where the chase flies to the front of the target to complete the 

mission. Finally, relative GPS issues such as integer ambiguity and cycle slip were 

assumed to be resolved. In this study, linear time-invariant equations of motions were 

used to govern the relative dynamics between the chase and target vehicles. 

Previous command trajectory research suggested that docking accuracies were 

highly sensitive to initial vertical position errors while fairly insensitive to initial 

horizontal position errors of the chase vehicle. In this study, command trajectories 

were deemed feasible by maximizing the locus of admissible initial vertical positions 
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and comparing the maximum vertical position error to documented relative GPS 

accuracies. In this study, constrained trajectory optimization was used to determine 

this locus of initial positions. 

Results show that for small initial horizontal separations between the chase and 

target vehicles, one impulse command trajectories were not feasible based on required 

initial vertical position accuracy. For small separations, the initial vertical position 

accuracy were too stringent for relative GPS position determination. The robustness 

for two impulse command trajectories were significantly better. The accuracy re- 

quired of two impulse command trajectories were determined to clearly be obtainable 

using relative GPS. At a given initial horizontal separation, required initial vertical 

position accuracies were nearly constant regardless of the application time of the sec- 

ond impulse. As compared to two impulse command trajectory results, initial vertical 

position accuracy requirements for the three impulse command trajectory exhibited 

no significant improvement. However, the increase in total velocity change required 

of the chase vehicle was significant to the point where the implementation of a three 

impulse maneuver over a two impulse maneuver was not warranted. From an engi- 

neering standpoint, the two impulse command trajectory was the best maneuver to 

complete the specified docking mission. 

The development of the thruster management system was based upon determining 

optimal throttle settings given a desired impulse command. In addition to realizing 

the impulse command, an additional constraint required that the resultant chase vehi- 

cle motion was purely translational. The specific model used for the chase vehicle was 

the cargo transfer vehicle. In this study, it was determined that formulations could 

be developed where the thruster management system realized the impulse commands 

while producing no resultant moment. Research in designing the management system 

was preliminary in that no effort was made on developing a modulator to determine 

minimum thruster firing times based on the throttle settings. 

There are several areas of possible future work in this field. Additional work 

is required to complete the thruster management system. Future work could also 

involve examining thruster error and finite-burn effects. Additionally, navigational 
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errors and pointing errors are very important with these maneuvers. Thus, future 

research could be devoted to these issues. Other areas of recommended research 

could involve incorporating other force effect, such as differential drag, gravitational 

effect of the Moon, and solar pressure, which can affect the desired motion of the 

chase vehicle. Finally, future work could involve developing a closed-loop guidance, 

navigation, and control system where navigation corrections are performed by relative 

GPS in real-time. 
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Appendix A 

Early AR&D Formulations 

The optimization formulations and results presented in this appendix illustrate early, 

unpublished AR&D research performed by Dr. Daniel D. Moerder (NASA LaRC) and 

Dr. Robert B. Bless (Lockheed). The basic research involves determining optimized 

trajectories for a single impulse command trajectory with no preconceptions about 

the initial position error sensitivities in relation to docking accuracies. Thus, their 

formulations involve determining a locus of initial positions, xo and yo, and not just 

a locus of initial vertical positions. Within this locus, the chase vehicle performs a 

fixed sequence of impulses which translates the vehicle into the target while satisfying 

the accuracy requirements listed in Table (2.1). 

A.1 Early AR&D Problem Statement 

An early approach to this problem is to determine the maximum two-dimensional 

“footprint” of admissible initial positions for the chase vehicle such that a single fixed 

impulse anywhere within this footprint results in a successful docking with the target. 
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In polar coordinates, the formulation is to maximize 

3 = xi + yi = ro 2 

where the initial position is represented as 

xo = rocos8 

yo = rosin8 

To generate a footprint of admissible initial positions, the parameter 8 is allowed to 

range from 0 deg to 360 deg. In this approach, the only constraints to the optimization 

problem are to satisfy the target conditions summarized in Table (2.1) and represented 

mathematically in Eqn. (2.4). 

A.2 Early AR&D Results 

Figure (A.1) illustrate admissible position errors about the nominal initial chase vehi- 

cle position, xo and yo, which in this figure is centered about the origin. These AR&D 

results show that to meet the accuracy required at docking the position errors of the 

chase vehicle at its initial condition are very sensitive to the initial vertical position 

errors while fairly insensitive to horizontal position errors. In fact, the admissible 

errors in the horizontal position of the chase vehicle are in the order-of-magnitude 

of several feet. Documented results of relative GPS orbit determination performance 

has demonstrated that local horizontal position errors of several feet are clearly ob- 

tainable [8, 9, 101. However, based purely on these results, it is uncertain whether 

the admissible errors in the initial vertical position of the chase vehicle is attainable 

through relative GPS position determination. 

It is important to point out that this early AR&D formulation is based on the 

assumption that intermediate trajectories within the boundary of the footprint satisfy 

target constraints. However, results from Chapter 3 show that this assumption is not 

true without actually constraining the interior trajectories. Thus, if interior trajectory 

constraints are included in the formulation, the overall magnitude of the footprint 
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Figure A.l: Early AR&D footprint results of admissible position errors at the chase 

vehicle initial condition 

would decrease, but it is safe to presume that the trend exhibited in Fig. (A.l)  would 

continue to exist. 

Furthermore, optimized trajectory simulations of this single impulse AR&D ma- 

neuver are performed based on the optimization formulation of Eqns. (A.l)  and 

(2.4). Figure (A.2) illustrate two chase vehicle trajectories initiated from the upper- 

most and lowermost admissible vertical positions. Based on Fig. (A.2), the chase 

vehicle approaches the target vehicle tangentially from either side. In this basic for- 

mulation, the final approach trajectory of the chase vehicle is uncontrolled. Ideally, it 

is best to formulate the trajectory optimization problem such that the chase vehicle 

always approaches the target from a specified direction. As seen in Fig. (A.2), to 

accommodate different chase vehicle approach trajectories, the target vehicle docking 

port would have to be continually reorientated based upon the initial position of the 

chase vehicle. While reorientating small target vehicles would certainly be possible, 

this scenario is impractical for large proposed target structures such as Space Station 

Freedom. 
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0 
Relative position x (ft) 

Figure A.2: Early AR&D trajectory simulation starting from the extreme ends of 

admissible initial vertical chase positions 

The results of this early AR&D formulation lay the groundwork for the current 

constrained trajectory optimization problem presented in Chapter 3. It hints at the 

need to maximize a locus of initial vertical positions for the chase vehicle. It also 

illustrates the required addition of gate constraints that must be satisfied by the chase 

vehicle to generate more direct and predictable optimized approach trajectories. 

63 



Appendix B 

Quadratic Behavior at Target 

Vehicle 

Analysis of rendezvous and docking results has shown that Eqn. (3.5) is violated for 

the intervals of yo - AyO 5 yo 5 yo + Ayo at a given 20. To adequately satisfy this 

constraint, an assumed parabolic behavior of ey is exploited by modeling the behavior 

of Eqn. (3.5) as a quadratic according to Eqn. (3.16). The additional constraint 

expression of Eqn. (3.18) is required in the three trajectory problem formulation. 

There are two governing equations related to the behavior of yf. By the Clohessy- 

Wiltshire dynamical model [ll], they are 

4 sin wt  2YO "(yo, t )  = xo + Gyo(wt - sinwt) + io( - 3t)  + -(1 - coswt) (B.1) W W 

2i0 YO Y(Yo,t) = (4 -  COS wt)yo - -(I W - coswt) + - w sinwt 

where 20, io, and $0 are assumed to be given for a particular command trajectory. 

To show quadratic behavior, Eqns. (B.l)  and (B.2) are expanded about the target, 

i.e. at t = tf ,  using a first-order Taylor series. The Taylor series will have the form: 
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where, at the target, Sxf = 0. Note that the higher-order terms in Eqns. (B.3) and 

(B.4) are negligible since secular terms exist in the governing equations. 

From Eqn. (B.3), a set of all feasible solutions of Stf in terms of Syo is found to 

be 

(B.5) 
6(sin wtf - wtf) 

6wy0( 1 - cos wtf) - i0(3 - 4 cos wtf) + 2y0 sin wtf 

Using Eqns. (B.4) and (B.5), a perturbation relation between Syf and Syo is found 

Stf = SYO 

to be of the form: 

where 

(B-7) 1 A = 6w(7 - 7 cos wtf - 3wtf sin wtf) 

B = io(12wtf sin wtj + 25 cos utj - 24) + yo(8 sin wtf - 6wtf cos utj) 

C = 6w( 1 - COS wtf) 

D = i0(4coswtf - 3) + 2$0 sinwtf 

Recall that Eqn. (B.7) contains xo, 20, and yo which are assumed to be given for a 

particulas impulse scheme. 

Clearly, the perturbation relation of Eqn. (B.6) represent the tangential relation- 

ship between the final position of the chase vehicle, yf, in terms of its initial position, 

yo. To show a relation is quadratic with a clear maximum point is the equivalent 

to showing that the corresponding tangential relation is linear. The relation derived 

using perturbation methods is a ratio of linear relations for all feasible solutions of 

tf and yo. However, results for the impulse command trajectories posed in this work 

consist of a specific set of feasible solutions. Thus, to show that Eqn. (B.6) is linear, 

the magnitude of A must dominate,the magnitude of C. Evaluating Eqn. (B.7) using 
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optimized single impulse solutions 'at xo = 600 f t  results in the following order of 

magnitudes: 

B M 10-1 

c M 10-5 

D x 

Based on Eqn. (B.8), the dominant linear relation in Eqn. (B.6) is the numerator. 

The dominant term in the denominator of Eqn. (B.6) is the stand-alone constant D. 

In fact, the smallest order of magnitude in Eqn. (B.8) is the one associated with the 

linear coefficient term in the denominator. At O(lO-'), this term is three orders-of- 

magnitude smaller than the magnitude of A which clearly implies that Eqn. (B.6) 

can be approximated as a linear relation. Figure (B.l) displays Eqn. (B.6) using 

results from the optimized single impulse command trajectory over the entire interval 

of yo and its corresponding set of t f .  The graphic shows a decreasing linear relation 

crossing the zero axis. This shows fairly conclusively that yf(y0) is a parabolic relation 

with a clear maximum. 
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Figure B. 1: Perturbation results of 2 using optimized single-impulse results at 

~0=600 ft 
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